Math 5C Discussion Problems 3 Selected Solutions

Power Series

1. Find the radius and interval of convergence for the following power series.
(a) $\sum 5^{n} x^{n} / n^{n} \quad R=\infty$
(b) $\sum x^{n} / \ln n \quad R=1$
(c) $\sum(-1)^{n+3} x^{2 n+1} /(n!)^{2} \quad R=\infty$
(d) $\sum x^{n} /\left(1+n^{2}\right) \quad R=1$
(e) $\sum x^{n} /(\ln n)^{n} \quad R=\infty$
2. Remember the result: if $|y|<|x|$ and $\sum a_{n} x^{n}$ converges, then $\sum a_{n} y^{n}$ converges absolutely.
3. Assume that $\sum a_{n} 4^{n}$ converges conditionally. What can you say about the convergence of each of the following?
(a) $\sum a_{n} 5^{n} \quad$ diverges
(b) $\sum a_{n} 2^{n} \quad$ converges absolutely
(c) $\sum a_{n}(-3)^{n} \quad$ converges absolutely
(d) $\sum a_{n} \quad$ converges absolutely
4. Given that $f(x)=\sum a_{n} x^{n}$ converges in a neighborhood of zero, what is $f^{\prime \prime \prime}(0)$? $6 a_{3}$
5. Which of the following are true for x near zero?
(a) $x^{2}=O\left(x^{3}\right) \quad$ no
(b) $x^{3}=O\left(x^{2}\right) \quad$ yes
(c) $x^{2}+x^{4}=O\left(x^{3}\right) \quad$ no
6. Note that

$$
y^{2}=\left(x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\cdots\right)^{2}=x^{2}+\frac{x \cdot x^{2}}{2!}+\frac{x^{2} \cdot x}{2!}+O\left(x^{4}\right)=x^{2}+x^{3}+O\left(x^{4}\right)
$$

7. The answer is

$$
z=x-\frac{x^{2}}{2}+O\left(x^{3}\right)
$$

Taylor Series

1. Done in lecture.
2. Use the series.
3. Evaluate the following limits.
(a) $\lim _{x \rightarrow 0} \frac{\sin x^{3}}{x^{3}}=1$
(b) $\lim _{n \rightarrow \infty} n\left(e^{1 / n}-1\right)=1$
(c) $\lim _{x \rightarrow 0} \frac{\cos (\sin x)-\cos x}{\arctan \left(x^{4}\right)}=\frac{1}{6}$
(d) $\lim _{x \rightarrow 0} \frac{e^{-x^{2}} \cos x-1}{x^{2}}=-\frac{3}{2}$
(e) $\lim _{x \rightarrow 0+} \frac{x^{x}-1}{x \ln x}=1$
(f) $\lim _{x \rightarrow 0} \frac{e^{\sin x}-1-x}{x^{2}}=\frac{1}{2}$
(g) $\lim _{n \rightarrow \infty} n^{3}\left(\arctan \left(\frac{1}{n}\right)-\sin \left(\frac{1}{n}\right)\right)=-\frac{1}{6}$
(h) Call the answer L.

$$
L=\exp \lim _{n \rightarrow \infty} \ln \left[\left(1+\frac{1}{n}\right)^{n^{2}} e^{-n}\right]=\exp \lim _{n \rightarrow \infty}\left[n^{2} \ln \left(1+\frac{1}{n}\right)-n\right]
$$

Use $\ln (1+x)=x-x^{2} / 2+O\left(x^{3}\right)$ to write

$$
L=\exp \lim _{n \rightarrow \infty}\left[n^{2}\left(\frac{1}{n}-\frac{1}{2 n^{2}}+O\left(n^{-3}\right)\right)-n\right]=\exp \lim _{n \rightarrow \infty}\left[-\frac{1}{2}+O\left(n^{-1}\right)\right]=e^{-1 / 2}
$$

3. Either recognize known power series or manipulate known power series.
(a) $1+1+\frac{1}{2!}+\frac{1}{3!}+\frac{1}{4!}+\cdots=e$
(b) $\pi-\frac{\pi^{3}}{3!}+\frac{\pi^{5}}{5!}-\frac{\pi^{7}}{7!}+\cdots=\sin \pi=0$
(c) $1+\frac{1}{2 \cdot 3!}+\frac{1}{4 \cdot 5!}+\frac{1}{8 \cdot 7!}+\cdots=\sqrt{2} \sinh (1 / \sqrt{2})$
(d) Let $f(x)=1+2 x+3 x^{2}+4 x^{3}+\cdots$ and note that we want $f(1 / 3)$. Now notice the derivative of the geometric series:

$$
f(x)=\frac{d}{d x}\left(1+x+x^{2}+x^{3}+\cdots\right)=\frac{d}{d x}\left(\frac{1}{1-x}\right)=\frac{1}{(1-x)^{2}},
$$

so $f(1 / 3)=9 / 4$.
(e) $1+\frac{2^{2}}{7}+\frac{3^{2}}{7^{2}}+\frac{4^{2}}{7^{3}}+\frac{5^{2}}{7^{4}}+\cdots=\left.\frac{d}{d x} \sum_{n=0}^{\infty} n x^{n}\right|_{x=1 / 7}=\left.\frac{d}{d x} \frac{x}{(1-x)^{2}}\right|_{x=1 / 7}=\frac{49}{27}$
(f) $1+\frac{1}{2 \cdot 7}+\frac{1}{3 \cdot 7^{2}}+\frac{1}{4 \cdot 7^{3}}+\frac{1}{5 \cdot 7^{4}}+\cdots=7 \ln (7 / 6)$

Fourier Series

1. Think orthogonality!
2. For each of the following 2π-periodic functions, compute the Fourier series.
(a) Since f is odd, all $a_{n}=0$. Then $b_{n}=\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin n x d x=\frac{2\left(1-(-1)^{n}\right)}{\pi n}$. Thus

$$
f(x) \sim \sum_{n=1}^{\infty} \frac{2\left(1-(-1)^{n}\right)}{\pi n} \sin n x
$$

(b) Since f is odd, all $a_{n}=0$. Then $b_{n}=\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin n x d x=\frac{2(-1)^{n+1}}{n}$. Thus

$$
f(x) \sim \sum_{n=1}^{\infty} \frac{2(-1)^{n+1}}{n} \sin n x
$$

(c) Just compute the integrals. No tricks.
(d) Again, just compute.
3. Let $h(x)=f(x) g(x)$. If f, g are even then $h(-x)=f(-x) g(-x)=f(x) g(x)=h(x)$. If f, g are odd then $h(-x)=f(-x) g(-x)=(-1)^{2} f(x) g(x)=h(x)$. If f is even and g is odd, then $h(-x)=f(-x) g(-x)=$ $-f(x) g(x)=-h(x)$.
4. Substitute $u=-x$ into the integrals for a_{n}, b_{n}.
7. Solution. Replacing x with $|x|$ makes the identity true for $-\pi<x<\pi$. Parseval gives

$$
\frac{1}{\pi} \int_{-\pi}^{\pi} \ln ^{2}\left(2 \sin \frac{|x|}{2}\right)=\sum_{n=1}^{\infty} \frac{1}{n^{2}}=\frac{\pi^{2}}{6}
$$

The integrand is an even function, so

$$
\int_{0}^{\pi} \ln ^{2}\left(2 \sin \frac{x}{2}\right) d x=\frac{1}{2} \int_{-\pi}^{\pi} \ln ^{2}\left(2 \sin \frac{|x|}{2}\right) d x=\frac{\pi^{3}}{12}
$$

Series: Miscellany

1. Solution. For small $t, \ln (1+t)=t-t^{2} / 2+O\left(t^{3}\right)$. Thus

$$
\ln \left(1+\frac{1}{n}\right)^{n}=n \ln \left(1+\frac{1}{n}\right)=1-\frac{1}{2 n}+O\left(n^{-2}\right)
$$

Undoing the logarithm,

$$
\left(1+\frac{1}{n}\right)^{n}=\exp \left(1-\frac{1}{2 n}+O\left(n^{-2}\right)\right)=e \cdot \exp \left(-\frac{1}{2 n}+O\left(n^{-2}\right)\right)
$$

For small $t, \exp (t)=1+t+O\left(t^{2}\right)$, so

$$
\left(1+\frac{1}{n}\right)^{n}=e \cdot\left[1+\left(-\frac{1}{2 n}+O\left(n^{-2}\right)\right)+O\left(n^{-2}\right)\right]=e-\frac{e}{2 n}+O\left(n^{-2}\right)
$$

The limit is

$$
\lim _{n \rightarrow \infty} n\left(\left(1+\frac{1}{n}\right)^{n}-e\right)=\lim _{n \rightarrow \infty} n\left(-\frac{e}{2 n}+O\left(n^{-2}\right)\right)=\lim _{n \rightarrow \infty}-\frac{e}{2}+O\left(n^{-1}\right)=-\frac{e}{2}
$$

In other words,

$$
\left(1+\frac{1}{n}\right)^{n}=e-\frac{e}{2 n}+O\left(n^{-2}\right)
$$

for large n.
2. Hint. Use the fact that $e=1 / 0!+1 / 1!+1 / 2!+\cdots$
3. Use what you know about approximating functions to determine converegence of these series.
(a) $\sum\left(1-\cos \left(\frac{1}{n}\right)\right) \approx \sum \frac{1}{2 n^{2}}$. Use limit comparison to make rigorous.
(b) $\sum\left(1-n \sin \left(\frac{1}{n}\right)\right) \approx \sum \frac{1}{6 n^{2}}$

Harmonic Functions

1. Which of these functions are harmonic on \mathbb{R}^{2} ?
(a) $f(x, y)=e^{x} \sin y \quad$ (yes)
(b) $f(x, y)=x^{2}-y^{2} \quad(y e s)$
(c) $f(x, y)=x^{2}+y^{2} \quad$ (no)
(d) $f(x, y)=\ln \left(x^{2}+y^{2}\right) \quad$ (yes, unless you want to argue that it isn't defined at the origin)
2. If $f=g=x$, then $\Delta f=\Delta g=0$, but $\Delta(f g)=2$.
3. Assume B is a ball and f and g are harmonic. If $f=g$ on ∂B, then $f-g$ is harmonic and identically 0 on ∂B. Since $f-g$ attains its max and min on the boundary, $f-g \leq 0$ in B and $f-g \geq 0$ in B. Thus $f-g=0$ everywhere in B.
4. Suppose f is harmonic and $f=0$ on ∂B, where B is a ball. The zero boundary condition implies the surface integral below is zero:

$$
0=\iint_{\partial B} f \nabla f \cdot d \mathbf{A}=\iiint_{B}\|\nabla f\|^{2} d V
$$

Since $\|\nabla f\|^{2} \geq 0$, the integral could only be zero if $\nabla f=0$ everywhere. Thus f is constant.
8. Again, $f-g$ is harmonic and zero on the boundary.
9. Find constants A and B so that $A \ln \left(x^{2}+y^{2}\right)+B$ matches the boundary data.
10. f must be constant!
12. Since f is harmonic, use the mean-value property.

$$
\iint_{\partial B} f d \sigma=\operatorname{area}(\partial B) f(10,10,10)=40 \pi \ln 200
$$

